Cohomology and Quillen categories of finite p-groups and coclass theory

Bettina Eick

TU Braunschweig

Jena, February 2015
Introduction
Cohomology groups

Definition

G a finite p-group and \mathbb{F} the field with p elements.

1. $H^n(G, \mathbb{F})$ is the nth cohomology group of G with coefficients in \mathbb{F} for $n \in \mathbb{N}_0$.

2. $H^n(G, \mathbb{F})$ is a finite-dimensional \mathbb{F}-vectorspace for $n \in \mathbb{N}_0$.

3. (a) $H^0(G, \mathbb{F}) \cong \mathbb{F}$.

 (b) $H^1(G, \mathbb{F}) \cong \text{Hom}(G, \mathbb{F})$.

 (c) $H^2(G, \mathbb{F}) \leftrightarrow$ equivalence classes of central extensions of G.

Cohomology Rings

(1) \(H^*(G, \mathbb{F}) = \bigoplus_{n \in \mathbb{N}_0} H^n(G, \mathbb{F}) \) is the mod-\(p \) cohomology ring of \(G \).

(2) \(H^*(G, \mathbb{F}) \) is a graded \(\mathbb{F} \)-algebra via the cup-product \(H^n(G, \mathbb{F}) \otimes H^m(G, \mathbb{F}) \to H^{n+m}(G, \mathbb{F}) \).

(3) \(H^*(G, \mathbb{F}) \) is infinite-dimensional as \(\mathbb{F} \)-vectorspace and finitely presented as \(\mathbb{F} \)-algebra.

(4) \(H^*(G, \mathbb{F}) = \mathbb{F} \oplus I \) with \(I = \bigoplus_{n \in \mathbb{N}} H^n(G, \mathbb{F}) \) and \(I \) is residually nilpotent.
Examples

Dihedral groups

Let D_{2^i} be the dihedral group of order 2^i. Then $H^*(D_{2^i}, \mathbb{F})$ is a commutative graded unital \mathbb{F}-algebra with

$$H^*(D_{2^i}, \mathbb{F}) \cong \langle a, b, x, y \mid a^2 = x, b^2 = ab \rangle$$

for $\text{deg}(a) = \text{deg}(b) = 1$ and $\text{deg}(x) = \text{deg}(y) = 2$.
Question

When is $H^*(G, \mathbb{F}) \cong H^*(H, \mathbb{F})$ for $G \not\cong H$?

Aim

Investigate isomorphisms among cohomology rings of p-groups.
Groups by Order
2-groups of small order

<table>
<thead>
<tr>
<th>number</th>
<th>determined by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^1</td>
<td>1</td>
</tr>
<tr>
<td>2^2</td>
<td>2</td>
</tr>
<tr>
<td>2^3</td>
<td>5</td>
</tr>
<tr>
<td>2^4</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Hölder 1893</td>
</tr>
<tr>
<td>2^5</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Miller 1898</td>
</tr>
<tr>
<td>2^6</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Hall & Senior 1964</td>
</tr>
<tr>
<td>2^7</td>
<td>2328</td>
</tr>
<tr>
<td></td>
<td>James, Newman & O’Brien 1990</td>
</tr>
<tr>
<td>2^8</td>
<td>56 092</td>
</tr>
<tr>
<td></td>
<td>O’Brien 1991</td>
</tr>
<tr>
<td>2^9</td>
<td>10 494 213</td>
</tr>
<tr>
<td></td>
<td>Eick & O’Brien 2000</td>
</tr>
<tr>
<td>2^{10}</td>
<td>49 487 365 422</td>
</tr>
<tr>
<td></td>
<td>Eick & O’Brien 2000</td>
</tr>
</tbody>
</table>
Cohomology rings of small 2-groups

Algorithms

(1) Carlson: algorithm to compute a finite presentation for $H^*(G, \mathbb{F})$. Determined $H^*(G, \mathbb{F})$ for all G with $|G| \leq 64$.

(2) Green & King: improved this method. Determined $H^*(G, \mathbb{F})$ for all G with $|G| \leq 128$ and some larger 2-groups.
Isomorphism testing

King & Eick

Developed an algorithm to test if two mod-p cohomology rings of finite p-groups are isomorphic (as graded algebras).
Isomorphism testing: Step 1

Step 1

Distinguish non-isomorphic rings by invariants

1. Use the Poincare-Series \(\sum_{n \in \mathbb{N}} \dim(H^n(G, \mathbb{F})) t^n \).

2. Use nilpotent quotients \(A/A^i \) of the residually nilpotent ideal \(A = \bigoplus_{n \in \mathbb{N}} H^n(G, \mathbb{F}) \).
Step 2

Developed an algorithm to determine a graded isomorphism between two mod-p cohomology rings if it exists:

(1) Rings are given by finite presentations with homogeneous generators.

(2) There are only finitely many options for the image of each homogeneous generator.

(3) For each collection of possible images use the given presentation to check if this is an homomorphism.

(4) Make this efficient by reducing the number of possible images to a minimum!
Application

Determined isomorphism types of rings $H^*(G, \mathbb{F})$ for $|G| | 64$:

1. There are 340 isomorphism types of groups.

2. Number of t-tupels of isomorphic rings

<table>
<thead>
<tr>
<th>t</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#$</td>
<td>23</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Thus there are 264 isomorphism types of cohomology rings.
Coclass
Coclass

Definition (Leedham-Green & Newman)

Let $|G| = p^n$ and $c = cl(G)$. Then $cc(G) = n - c$ is the coclass of G.
Coclass Graphs

Visualize the p-groups of fixed coclass r in a graph $\mathcal{G}(p, r)$:

1. Vertices correspond one-to-one to the isomorphism types of p-groups of coclass r.

2. $H \rightarrow G$ if $G/\gamma(G) \cong H$, where $\gamma(G)$ is the last non-trivial term of the lcs of G.

3. $\mathcal{G}(p, r)$ is an infinite forest for each p and r.
Example: $G(2, 1)$:
Theorem (Carlson)

Let \(r \in \mathbb{N} \). Then there are only finitely isomorphism types of rings \(H^*(G, \mathbb{F}) \) for the infinitely many groups \(G \) in \(\mathcal{G}(2, r) \).
Questions

Question 1
Which groups in $G(2, r)$ lead to isomorphic cohomology rings?

Question 2
What happens in the odd prime case?
Coclass trees

A subtree \mathcal{T} of $\mathcal{G}(p, r)$ is a \textit{coclass tree} if

1. \mathcal{T} is a descendant tree: it contains all descendants of its root.
2. \mathcal{T} has a unique infinite path starting at its root (the main line).
3. \mathcal{T} is maximal with these properties in $\mathcal{G}(p, r)$.

Theorem (Leedham-Green, Shalev)

$\mathcal{G}(p, r)$ consists of finitely many coclass trees and finitely many other vertices.
Pruned coclass trees

Let \mathcal{T} be a coclass tree in $G(p,r)$ with main line G_0, G_1, \ldots. Let $k, l \in \mathbb{N}$ and define subtrees:

1. \mathcal{T}_k consists of all vertices of distance at most k from the main line.
2. $\mathcal{T}^{(l)}$ consists of all descendants of G_l in \mathcal{T}.
3. $\mathcal{T}_k^{(l)}$ consists of all descendants of G_l in \mathcal{T}_k.

Theorem (Leedham-Green & McKay)

If $p = 2$, then there exists $k = k(p,r)$ with $\mathcal{T}_k = \mathcal{T}$.

Introduction
Groups by Order
Groups by Coclass
Quillen categories
Summary

Bettina Eick
Cohomology of finite p-groups and coclass
Theorem (du Sautoy, Eick & Leedham-Green)

Let \mathcal{T} be a coclass tree in $\mathcal{G}(p, r)$ and let $k \in \mathbb{N}$. Then \mathcal{T}_k is virtually periodic; that is there exists l and d with $\mathcal{T}_k^{(l)} \cong \mathcal{T}_k^{(l+d)}$.

Proofs

(1) du Sautoy: Zeta-functions;

(2) Eick & Leedham-Green: An explicit group theoretic construction: the coclass families (G_0, G_1, \ldots).
Conjecture

Let \((G_0, G_1, \ldots)\) be a coclass family. Then \(H^*(G_i, \mathbb{F}) \cong H^*(G_j, \mathbb{F})\) for each \(i, j \geq l\) for some \(l \in \mathbb{N}\).
Quillen categories
Definition

Let G be a finite p-group. The Quillen category $A_p(G)$:

1. objects are the elementary abelian subgroups of G,
2. morphisms are the injective group homomorphisms induced by conjugation with elements of G.

Definition

A category allows the construction of a limit. We denote

\[\overline{H}^*(G, \mathbb{F}) = \lim_{E \in A_p(G)} H^*(E, \mathbb{F}). \]
Definition

Restriction induces a natural homomorphism

\[\rho : H^* (G, \mathbb{F}) \rightarrow \overline{H}^* (G, \mathbb{F}). \]

Quillen’s theorem

\(\rho \) is an inseparable isogeny; That is, every homogeneous element of its kernel is nilpotent and for every element \(s \) in its range there exists \(n \in \mathbb{N} \) with \(s^{p^n} \) in its image.
(Theorem (Green & Eick))

Let \((G_0, G_1, \ldots)\) be a coclass family and let \(i, j \geq l\).

1. \(A_p(G_i)\) is equivalent to \(A_p(G_j)\).

2. \(\overline{H}^*(G_i, \mathbb{F}) \simeq \overline{H}^*(G_j, \mathbb{F})\).
Let \((G_0, G_1, \ldots)\) a coclass family in \(G(p, r)\) and let \(i, j \geq l\).

1. The isomorphism \(\overline{H}^*(G_i, \mathbb{F}) \cong \overline{H}^*(G_j, \mathbb{F})\) can be considered as support for the conjecture \(H^*(G_i, \mathbb{F}) \cong H^*(G_j, \mathbb{F})\) for \(i, j \leq l\).

2. Works for all primes \(p\).
Proof

General idea
Let \((G_0, G_1, \ldots)\) be a coclass family.

1. Determine a special skeleton \(\overline{A}_p(G_i)\) in \(A_p(G_i)\) for \(i \in \mathbb{N}\).

2. Define a functor \(F_i : \overline{A}_p(G_i) \to \overline{A}_p(G_{i+1})\) for \(i \in \mathbb{N}\).

3. Prove that \(F\) induces an equivalence of categories.
Proof

Side-products

Let S be the infinite pro-p-group associated with (G_0, G_1, \ldots).

(1) Determine a special (and finite) skeleton $\overline{A}_p(S)$.

(2) Define a functor $\hat{F_i} : \overline{A}_p(G_i) \to \overline{A}_p(S)$.

(3) $\hat{F_i}$ is not necessarily injective or surjective, but it exhibits how these categories are linked to each other.
Let S be an infinite pro-p-group of finite coclass r.

(1) There exists $T \leq S$ with $R = S/T$ finite and $T \cong \mathbb{Z}^d$.

(2) For $U \leq R$ let \overline{U} denote the full preimage of U in S.
The Quillen category for S

Objects in $\mathcal{A}_p(S)$

1. Let $\mathcal{L} = \{L \leq R \mid L \text{ elementary abelian and } \overline{L} \text{ splits over } T\}$.

2. Let $C_L = \{t(l) \mid l \in L\}$ a complement to T in \overline{L} (for $L \in \mathcal{L}$).

3. Let $C_L(\delta) = \{t(l)\delta(l) \mid l \in \mathcal{L}\}$ (for $L \in \mathcal{L}$ and $\delta \in Z^1(L, T)$).

4. Objects of $\mathcal{A}_p(S)$ are $\{C_L(\delta) \mid L \in \mathcal{L}, \delta \in Z^1(L, T)\}$.
The skeleton for S

Objects in $\overline{A}_p(S)$

1. Let $T^1(L, T)$ be a transversal to $B^1(L, T)$ in $Z^1(L, T)$.
2. Objects of $\overline{A}_p(S)$ are $\{C_L(\delta) \mid L \in \mathcal{L}, \delta \in T^1(L, T)\}$.
3. Each object in $A_p(S)$ is conjugate to an object in $\overline{A}_p(S)$. Hence $\overline{A}_p(S)$ is a (semi-)skeleton for $A_p(S)$.
4. The number of objects in $\overline{A}_p(S)$ is finite, as $|T^1(L, T)| = |H^1(L, T)|$ is finite and \mathcal{L} is finite.
Finite p-groups of fixed coclass

Coclass families

1. Let S be an extension of T by R via $\epsilon \in Z^2(R, T)$.

2. Let (G_0, G_1, \ldots) be an associated coclass family.

3. Then each G_i is an extension of $M_i = T/p^{e+i}T$ by R via $\gamma_i \in Z^2(R, M_i)$.

4. $H^2(R, M_i) \cong H^2(R, T) \oplus p^i H^3(R, T)$ and $[\gamma_i] = [\epsilon] + p^i \eta$ for some $\eta \in H^3(R, T)$.
Objects in $A_p(G_i)$

1. Let $\mathcal{L}_\eta = \{L \in \mathcal{L} \mid \eta_L = 0\}$.
2. Let $C_{L,i} = \{t_i(l) \mid l \in L\}$ a complement to T in \bar{L} (for $L \in L_\eta$).
3. Let $C_{L,i}(\delta) = \{t_i(l)\delta(l) \mid l \in L\}$ (for $L \in \mathcal{L}_\eta$ and $\delta \in Z^1(L, M_i)$).
4. Objects of $A_p(G_i)$ are
 $$\{C_{L,i}(\delta) \times O \mid L \in \mathcal{L}_\eta, \delta \in Z^1(L, M_i), O \leq \Omega(M_i)\}.$$
5. Objects of $A_p(G_i)$ are induced from objects in $A_p(S)$.

Bettina Eick
Cohomology of finite p-groups and coclass
The skeleton for G_i

Objects in $\overline{A}_p(G_i)$

1. Let $T^1(L, M_i)$ be a transversal to $B^1(L, M_i)$ in $Z^1(L, M_i)$.

2. Objects of $\overline{A}_p(G_i)$ are
 \[
 \{C_{L,i}(\delta) \times O \mid L \in L_\eta, \delta \in T^1(L, M_i), O \leq \Omega(M_i)\}.
 \]

3. Each object in $A_p(G_i)$ is conjugate to an object in $\overline{A}_p(G_i)$.
 Hence $\overline{A}_p(G_i)$ is a (semi-)skeleton for $A_p(G_i)$.

4. $H^1(L, M_i) = H^1(L, T) \oplus H^2(L, p^{e+i}T)$ implies that
 \[
 |T^1(L, M_i)| = |H^1(L, T)||H^2(L, T)|
 \]
 is independent of i.

Bettina Eick
Cohomology of finite p-groups and coclass
Summary
(1) Determined all isomorphisms between mod-2 cohomology rings of the groups of order dividing 64. (Many of them arise from coclass families.)

(2) If \((G_0, G_1, \ldots)\) is a coclass family in \(\mathcal{G}(p, r)\) for arbitrary prime \(p\) and \(r \in \mathbb{N}\), then \(\overline{H}^* (G_i, \mathbb{F}) \cong \overline{H}^* (G_j, \mathbb{F})\) for all \(i, j \geq l\).
Conjectures

Conjecture 1
Let p be an arbitrary prime and let $r \in \mathbb{N}$. Then there are only finitely many isomorphism types of mod-p cohomology rings $H^*(G, \mathbb{F}_p)$ for G in $\mathcal{G}(p, r)$.

Conjecture 2
Let p be an arbitrary prime, let $r \in \mathbb{N}$ and let (G_0, G_1, \ldots) be a coclass family in $\mathcal{G}(p, r)$. Then $H^*(G_i, \mathbb{Z})$ can be described by a single parametrised presentation for almost all $i \in \mathbb{N}_0$.